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THE OBLIQUE REFLEXION OF LONG WIRELESS WAVES FROM
'THE IONOSPHERE AT PLACES WHERE THE EARTH’S MAGNETIC
FIELD IS REGARDED AS VERTICAL

By J. HEADING anp R. T. P. WHIPPLE
(Communicated by D. R. Hartree, F.R.S.—Received 1 November 1951)
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The calculation of reflexion coeflicients for long wireless waves incident obliquely on the iono-
sphere requires an exact solution of the differential equations governing the propagation of
electromagnetic waves in the ionosphere. Equations are developed for the electromagnetic field
in a horizontally stratified medium of varying electron density, the presence of a vertical external
magnetic field and also the collision frequency of the electrons with neutral molecules being taken
into account. Provided certain inequalities hold amongst these ionospheric characteristics, the
ionosphere splits up effectively into two regions, in each of which the differential equations of
wave propagation approximate to simpler forms. If a model ionosphere is chosen in which the
ionization density increases exponentially with height, and the collision frequency is assumed
constant over the range of height responsible for reflexion, the equations for the two regions can
be solved exactly. The solution for the lower region is expressed in terms of hypergeometric func-
tions, and that for the upper region in terms of generalized confluent hypergeometric functions.
Exact expressions in terms of factorial functions can then be deduced for the reflexion coefficients
of both regions separately. Moreover, these coefficients can be combined, with due allowance for
the path difference between the two regions, to give the overall reflexion coefficients for the effect of
the ionosphere as a whole on an incident wave. A suitable definition is given for the apparent height
of reflexion in terms of the phase of the reflected wave. The results of the theory are illustrated in
graphical form for a particular model ionosphere approximating to the ‘tail’ of a Chapman region,
and a brief comparison with experimental observations concludes the paper.
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1. INTRODUCTION

In any theory of the propagation of long radio waves in the ionosphere, difficulties arise
when the wave-length is so great that the properties of the ionosphere change appreciably
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470 J. HEADING AND R. T. P. WHIPPLE ON THE

in distances comparable with 1 wave-length. Under these conditions it is no longer possible
to solve the propagation equations by using the ‘slowly varying’ approximation developed
by Appleton (1937) and Booker (1934, 1935); and the full formal wave solution, in the
presence of the earth’s steady magnetic field, presents considerable difficulties.

In two papers, Wilkes has gone some way towards solving the problem. In his first paper
(Wilkes 1940) he considered only the case of waves incident vertically on the ionosphere,
and in the theory he took the earth’s magnetic field as vertical. He showed how to calculate
the characteristics of the reflected wave for the two cases where (@) the density of the elec-
trons increased as the square of the height, and the frequency with which they collided with
neutral molecules was independent of the height, and (4) the electron density was constant
but the collision frequency decreased inversely as the height.

In his second paper (Wilkes 1947) he outlined an extension of the theory to include the
case of oblique incidence, again taking the earth’s magnetic field as vertical. He showed
generally that, with certain inequalities holding throughout the ionosphere, it was con-
venient theoretically to consider two separate regions; in the lower of these, which he named
the ‘transitional region’, the collision frequency of the electrons was of importance; in the
upper region, which he termed the ‘reflecting region’, the collision frequency could be
assumed to be negligible. Wilkes did not attempt to predict theoretically the effect of the
transitional region on a wave passing through it but suggested that absorption effects rather
than reflexion would take place. Since the analysis of this paper will show that reflexion
can occur from this transitional region, it has been considered preferable in this paper to
rename these two regions, by calling the lower transitional region ‘region I’ and the upper
reflecting region ‘region II’. For vertical incidence, region I disappears because of the
dependence of the equations of propagation on the sine of the angle of incidence. It also
disappears for horizontally polarized waves.

To illustrate the general theory Wilkes took a model in which the electron density in-
creased linearly with height. He dealt in detail only with the reflecting region, and he was
able to deduce, in general terms, a solution for the propagation of the wave in it. The
solution was not expressible in terms of tabulated functions, but as a set of integrals whose
asymptotic expansions were given ; the reflexion coefficients could not be evaluated without
lengthy numerical computation. Though he gave no graphical representation of his results,
he was able to show that no radical change would be expected as the angle of incidence was
altered from vertical to oblique. ‘

In this paper, Wilkes’s method of dividing the ionosphere into two distinct regions is
used, and the external magnetic field is again regarded as vertical. A model is assumed in
which the ionization density increases upwards exponentially with height and the collision
frequency is effectively constant over the rather narrow region where it plays an important
role. It is shown that the equations governing the oblique propagation of radio waves in
both regions can be solved analytically in such a manner that the reflexion coefficients can
be expressed exactly in terms of factorial functions which offer no computational difficulty.
This solution is made possible by a special change of independent variable (see § 4, equation
(8), and §7, equation (4)) which yields equations having hypergeometric functions as
solutions for region I and generalized confluent hypergeometric functions as solutions
for region II.
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OBLIQUE REFLEXION OF LONG WIRELESS WAVES 471

The nature of these two regions is discussed in a preliminary way in§ 3. In§§ 4 to 9 expres-
sions for the reflexion and transmission coefficients of the two regions separately are derived,
when the waves are incident obliquely. §10 deals with waves incident from below both
regions, these waves being partly reflected and partly transmitted by the lower region I
and reflected by the upper region II. Expressions for the overall reflexion coeflicients are
given. From the phase of the wave finally returned from the two regions together, an
expression is deduced for the ‘apparent height of reflexion’.

In § 13 the results of calculations are given in the form of a series of graphs drawn for
a particular model ionosphere for the frequencies of 16 and 80 kc/s. The ionosphere is chosen
to approximate closely to the ‘tail’ of a Chapman region such as might constitute the lowest
part of the E layer; the numerical parameters assumed for its description are discussed in
§12. Also in § 13 a comparison is made in outline with the results obtained by experiment.

It has not been found possible to explain the way in which the absorption of the reflected
wave varies with frequency, and it must still be assumed, as suggested by Wilkes (1940),
that there is an important absorbing region at a level below those considered in this paper.
If this absorption occurs at heights where the collision frequency is great enough (Z>| Y |),*
it will not affect the polarization appreciably. Stanley (1950) has recently outlined an
extension to Wilkes’s theory, for the case of vertical incidence, and has shown that by
including the effect of an extended lower region of weak ionization it is possible to explain
the way in which absorption varies with frequency. Using Wilkes’s treatment of the
oblique-incidence equations, it is not possible to repeat Stanley’s analysis for an ionosphere
where the electron density varies exponentially with height, since the values he needs for
the collision frequency violate the inequalities which must hold for Wilkes’s method.

2. NoTATION

We shall use the following notation:

x, 9,z Cartesian co-ordinates, z measured vertically upwards from the ground..
E = (E,E,E,) electric field components of the wave.

H = (H,H,H,) magnetic field components of the wave.

¢ = velocity of electromagnetic waves iz vacuo.

m = mass of electron.

e = positive numerical value of charge on electron.
N = electron density.

H, = earth’s magnetic field (assumed vertical).

p = 2mxfrequency of waves.

v = electronic collision frequency.

¢, = dielectric constant of free space.

4o = permeability of free space.

X = Netjmeop?® = phjp.
Y = eH, py/mp = pylp-
Z =vlp.
k =2m/A=ple.
* The nomenclature is explained in §2.
61-2
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472 J. HEADING AND R. T. P. WHIPPLE ON THE

¢ = angle of incidence of electromagnetic waves (in x, z plane, measured from z-axis).
[ =sin?0/[cos?0—X/(1—iZ)].

H = scale height of atmosphere.

z, = actual height of maximum ionization.

z, = height where | X/(1—iZ) | = 1.

2
Zy = 23"*‘}“,10& (2y/k).

zy = height where | X/Y | = 1.

a« = [d(log X)/dz],-,,, assumed effectively constant throughout region I.

y = [d(log X)/dz],.,, assumed effectively constant throughout region II.
¢ = arg[X/(1—iZ)],_,,, assumed effectively constant throughout region I.
v = exp (ie) exp [a(z—2z,)].
h =kl

g = (k/a)cosd.
w = exp[2y(z—2,)].
a =k/2y.

b = (k/2y)cosd.

, ,

r’

¢

. s below .
} reflexion coefficient for waves from { } region I.
, above

~

.. . below .
transmission coefficient for waves from region I.
P above

I’Z ’”‘; = reflexion coeflicients for region II (explained more fully below).
vy
Pry } = conversion coeflicients for region II (explained more fully below).

By
R, R

R xYd " yYxd

s R,,, overall coefficients, explained below.

We shall take the positive z-axis as vertically upwards, and regard the ionosphere as
horizontally stratified. We shall consider waves incident from below, with their wave
normals in the x, z plane and making an angle # with the vertical. If the incident wave is
plane-polarized with its electric vector in the x, z plane, we shall find in general that in the
reflected wave the electric vector is not confined entirely to this plane. We shall describe
the ratio of the components of electric field in the x, z plane after and before reflexion, in
terms of a ‘reflexion coefficient’ denoted by R,, or p,,, and the ratio of the component of
the reflected electric field in the y, z plane to the incident electric field in the x, z plane will
be described in terms of a ‘ conversion coefficient’ denoted by R, or p,,. Ifthe incident wave
is assumed to be linearly polarized with its electric field in the y, z plane, we shall describe
the corresponding reflected wave in terms of similar reflexion coefficients &, or p,,, and con-
version coeflicients R, or p,.. The symbol p will apply to the reflexion from region II, and
the symbol R to the composite wave produced below the ionosphere after reflexion from
both regions together.

3. THE TWO IMPORTANT REGIONS

Wilkes showed that when the wave frequency was much less than the gyro-frequency
px (the condition | Y [>1), there are two separate levels in the ionosphere which play a
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OBLIQUE REFLEXION OF LONG WIRELESS WAVES 473

decisive role in the propagation of the waves. He called one of these the ‘ transition region’
and the other the ‘reflecting region’; in this paper they are called region I and region II
respectively. These two regions remain of particular significance in our theory.

Region I occurs where X/|1—iZ | changes through unity from small to large values, but
XY remains small compared with unity.

Region IT is where X/| 1—iZ|> 1, but X/Y is not negligible.

The theory will show that horizontally polarized waves are unaffected by passage
through region I; but waves polarized with their electric field in the vertical plane are
partially reflected and partially refracted when incident obliquely. If the theory of pro-
pagation in a ‘slowly varying’ medium is applied to this region and if Z is taken to be <1,
then the wave component with the electric field in the vertical plane would be totally
reflected. Under certain conditions, e.g. at 16 kc/s, it will appear that X may increase so
rapidly that the whole region is only a fraction of a wave-length thlck In this case an
appreciable fraction of the energy leaks through.

The above inequalities, which govern the separation of the equations into two sets for
the two regions, mean that in region IT Z is negligible compared with | Y'|. It will be shown
that the wave in this region then breaks up into two elliptically polarized components, one
of which is reflected completely, and the other only partially. The result is that, in general,
the reflected wave has a component of electric field perpendicular to the plane of incidence,
even if the incident wave is plane-polarized with its electric field entirely in the plane of
incidence.

In the gap between the two regions, where X/| 1 —iZ|>1 and | X/Y | <1, two character-
istic waves can be propagated, each with its own velocity. This will be more fully discussed
in §10.

Under the above conditions the mathematical problem can conveniently be divided
into two parts, one appropriate to each of the two regions. At a frequency of 16kc/s,
| Y| =80, and the treatment in terms of the two regions is undoubtedly valid. At a frequency
of 80kc/s, | Y| =16, and although we shall continue to work in terms of the two regions, we
are near the range of frequency where this approximation is no longer valid.

4. THE DIFFERENTIAL EQUATIONS FOR REGION I

We take the axis of z to be vertical, the electron density (proportional to X) to vary only
in the z direction, the imposed magnetic field to be along the z direction, and time varia-
tions to be given by exp (ikct). If a plane wave is incident from free space with its wave
normal in the #, z plane making an angle ¢ with the z axis at z = —o0, then all field vectors
will vary like exp [ik(cz—xsind)]. Under these conditions Wilkes (1947, equations (2-4)
and (2:5)) showed that the field components satisfy the following equations :*

d? . d (,dE, X ' cy gy
o2 BB+ (1) + R (1~ y) (BB Fikesin208, =0, (1)
1 L dE,
z 1ksm01 dz (4-2)
where [ =sin?0/[cos?0—X/(1—iZ)]. (4-3)

* Note that Wilkes used the factor exp [ik(ct +x sin 8)].
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474 J. HEADING AND R. T. P. WHIPPLE ON THE

We now consider the form taken by these equations in region I. Here X/|1—iZ]| is of
the order unity, | Y |>1 and | Y |> X. It follows also that |1 —iZ-+ Y |> 1, so that the term
X/(1—iZFY) can be neglected.

Equations (4-1), (4-2) and (4-3) become

d_ x T 0, (4.4)
g
B 3 b, +k2cos?0E, = 0, (4-5)
1 dE,
B = smotdz (4:6)

The wave represented by (4-5), which is polarized with its electric vector along the y-axis
(horizontally polarized), is seen to travel at an angle f to the z-axis, so that the wave suffers
no refraction in region I.

The differential equation satisfied by £, can be found by differentiating (4-4) and sub-
stituting for dE,/dz from (4-6). Itis

dd22 [( +1) :l—l— = 0. (4+17)

It is convenient first to solve this equation for £,, then from equation (4-13) to deduce an
expression for E,, and hence calculate the reflexion and transmission coefficients.

Since | X/(1—iZ) | <1 below region I and >1 above, equation (4-3) shows that / has
the value tan?@ below and zero above. Equation (4-7) therefore shows that E, varies as
exp[—ik(xsin@+zcosd)] below region I and as exp[—ik(xsinf-+z)] above. A wave
polarized with its electric field in the plane of propagation is hence refracted upwards in
region I, and emerges with its wave normal making an angle ¢ with the z-axis, where ¥ is

given by tan ¢ = sind.

We now consider a particular model in which the electron density (proportional to X)
increases exponentially upwards, and the collision frequency (proportional to Z) is constant,

so that X/(1—iZ) = v(z) = exp (ic) exp [a(z—2z,)]. (4-8)
In this expression 0<e<}7. If Z<1, then ¢—0; but in general, ¢==0.

It is now convenient to make a change of independent variable from z to v(z) in (4-7).
This reduces it to an equation whose solution can be expressed in terms of hypergeometric
functions. Substituting for X/(1—iZ) in (4-3) then gives

141/l = (1—v)/sin%4.
dE, dE,dv dE

Also | = d—zzaw—d?=am9Ez,
where ¥ is the operator v(d/dv). We can therefore rewrite (4:7) thus:
a*?[(1—v) E_ ] +k%(cos?0—v) E, = 0, (4+9)

. L R LR
ie. @+Fm@@=@+ﬁ@@. (4-10)
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OBLIQUE REFLEXION OF LONG WIRELESS WAVES 475
In (4:10) we now substitute = (kcosf
(410) itu 8= (keost)a) ey
h = kla J
to obtain (P+g%) E, = (92+h?) (vE,); (4-12)

the solutions of which will be investigated in the next section. Once E, has been found,
E, can be obtained as follows:

BE, = — L [iksin0(1/i+1) E]
Z
- -iksin0a79(slm_*;—l’;Ez),
1

i.e. Ex == m’&[(l ‘*'U) Ez]“ (4:'13)

This expression is needed for the deduction of the reflexion and transmission coefficients
in § 6. Strictly speaking, the treatment given here only applies to oblique incidence, since
for normal incidence E, = 0, and (4-18) is indeterminate as an expression for E,. However,
E_/sin f remains finite as §—0; and although the solution could be carried out formally
in terms of E,/sin 6, this is not really necessary.

5. THE FUNDAMENTAL SOLUTIONS

By introducing the subsidiary change of dependent variable
E,(1) — v5¢F,(v)
into equation (4-12), we obtain for the equation satisfied by F,(v)
H(S+2ig) F, = v(¥+ig+ik+1) (S +ig—ik+1) F,.
This is the hypergeometric equation, having solutions (Copson 1935, § 10-3)
F,(0) = ,F,(d+ig+ih+1, tig—ih+1; +2ig+1;0).
Equation (4-12) thus has the two fundamental solutions
ED = vi¢,F (ig+ih+1,ig—ih+1; 2ig+1;0), (5:1)
E® = y-ig, F (—ig+ih+1, —ig—ih+1; —2ig+1;0). (5-2)
Similarly there exists a second set, linearly dependent on (5-1) and (5-2):
E® = y=i-LF (ih—ig+1,ih+ig+1; 2ik+1; 1)), (5°3)
E® = yit-LF (—ih—ig+1, —ih+ig+1; —2ik-+1; 1/0). (5-4)

In the free space below the ionospheré, |v]| <1, and the hypergeometric functions in
(5-1) and (5-2) are approximately unity. It follows that

EQ = vit = exp (—cg) exp [iag(2—2,)]
— exp ( —6g) exp [ikcosB(z—2z,)], (5:5)
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476 J. HEADING. AND R. T. P. WHIPPLE ON THE
and, by substituting in (4-13), that
3= ik szn ) o) = h sign 7 v
= cotfexp (—eg) exp [ikcosb(z—z,)]. (5:6)
Similarly from ( 5-2‘) it follows that
| E? = yig = exp (¢g) exp [ —ik cosO(z—z;)] (5:7)
and E® = —cot0 exp (¢g) exp [ —ikcos 0(z—z,)]. (5-8)

It is now apparent that, below the ionosphere, where |v|<1, affix 1 refers to a down-
coming wave, and affix 2 to an upgoing wave.
Similarly, above region I, where |v|> 1, it can be shown that

E® = v=it~1 = exp (¢h—ie) exp [ —a(z—z,)] exp [ —ik(z—2z)], (59)
EP = exp (eh) exp [ ~ik(z—z)|sin0, (5:10)
and E® = p=ih-1 = exp (—eh—ic) exp [ —a(z—z,)] exp [ik(z—2z,)], (5:11)
E® — —exp (—¢h) exp [ik(z—z,)]/sin ¥, (5-12)

so that affix 3 refers to an upgoing wave and affix 4 to a downgoing wave.

6. DETERMINATION OF THE REFLEXION AND TRANSMISSION COEFFICIENTS

Since equation (4-5) shows that the component £, is unaffected by passage through
region I, waves of the form (£,, 0, £,) need alone be considered. When the incident wave is
incident from below, the required boundary condition is that there is to be no wave pro-
pagated in the —z direction for | v |>1. Equations (5-11) and (5-12) show that (E®, 0, E(¥)
is a wave propagated in the —z direction for | v |> 1, and thus this solution is to be rejected.
The wave represented by (E®, 0, E®) is the complete solution throughout the whole region,
and satisfies the required boundary condition for | v [>1. To derive from this solution the
reflexion and transmission coefficients for waves incident from below, we follow an argu-
ment similar to that used by Epstein (1930). The solution (E®, 0, E®) is linearly dependent
on the other set of fundamental solutions (5-1) and (5-2), which, for |v|<1, represent,
respectively, the reflected and incident waves below the layer (equations (5-5), (5:7)).
In order to obtain the relative proportions of the incident, reflected and transmitted waves,
we must connect the hypergeometric functions of argument 1/v with those of argument v.
Following Copson (1935, § 10-41), if | arg (—v) | <, the required relation is

oIy(a, b5 ¢;50) = g:i)—!(lb)!_(ziiii(~—v)—a2Fl(a, l—c+a; 1—b+a; 1/v)
T

Now 0<argvk= e<3m, and hence —v must be interpreted as vexp (—im). Applying this

formula to (5-3),
) (@R g (9ih)! (—~%ig—1)! o,
B = —exp[nlh—8)) g5 i1 (ihrig - 1t 25 P el g i1
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OBLIQUE REFLEXION OF LONG WIRELESS WAVES 477

From formula (4-13), it follows that the same linear relation holds between EV, E? and
E®. Writing E® as E,, the field throughout the region, formulae (5-6) and (5-8) can be
used for E{ and E?, so that when z<z,, i.e. |v| <1,
B (2ik)! (2ig—1)!
E,~expmh—8)) ) T g — 1)

—exp [n(h+g)] (il(f—lfi)gl)g(—ihz%ijg——l—)ll)!cow exp (—¢g) exp [ikcosf(z—z,)]. (61)

,cotd exp (eg) exp [ —ikcosf(z—z,)]

Similarly, above the region, where z>1, i.e. | v|>1, using (5-10)

E, ~ exp (¢h) exp [ —ik(z—z;)]/sinb. (6-2)
Now take Ccosf exp[—ikcosf(z—z,)] as the incident field,
Crcos0 exp [ikcosf0(z—z,)]  as the reflected field,
Ctexp[—ik(z—2z,)] as the transmitted field,

where C is a constant, and 7 and ¢ are the reflexion and transmission coefficients respec-
tively of region I for waves incident from below. Comparing the coefficients C, Cr, Ct with
those in (6-1) and (6-2), we obtain the results:
. _\q(ik+ig—1)! (ih+ig)! (—2ig—1)!
r=—exp [2e(m—e) ] L Ty (ih—ig)! (2ig — 1)

ot ST, v
= exp [~ (h—g) (r—e)] P EE L (1!
— Zeosl exp [~ (h—g) (1—2)] [ L. (64

If the gradient of ionization is great, so that a (equation (4-8)) is large, then g and %
(equations (4-11)) are small and the factorial functions in equations (6-3) and (6-4) tend
to unity, so that the reflexion and transmission coeflicients take the simple form

r = (1—cosf)/(1+4cosf)
t = 2cosl/(1+cos0l).

In order to investigate the behaviour of waves incident on region I from above, the
required boundary condition is that the solution E® is omitted, and E{ is taken to repre-
sent the wave throughout the medium. EQ is expressed in terms of E and E, and a treat-
ment similar to that just given leads to the following values for the reflexion coefficient 7’

and the transmission coefficient ¢':
. 2 (igFib—1)! (ig+ih)! (—2ih—1)!
= exp [ = 2h(m—e)] ~ 1 (g =ik | (@h—1)1
Cd—cosf . oo (—2ik)! (ig+ih)!]2 '
= T Fcos s P L2 =] g l:(ig—ilz)! ’ (6:5)
, ig+ih—1)! (ig-+ih)!
¢ = exp [~ (i—g) (1= (2ig)!(2ilz(~1)!

— sgexp [ (h—g) (r—e] LEETL, (60

VoL. 244. A. 62
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We notice that ¢ =tsecd. (6-7)
The moduli | 7|, [¢], [7"|, | ¢ |, can be found by applying the formulae
(z—1)!(—2)! = 7 cosec (mz),
| (ig+ih)! | = | (—ig—if)! |
to equations (6-3) to (6:6). The moduli are given by

1] = exp 2e(r— >Jiﬁi—2-§%—§%

[t] = J(cosl) exp[—(h—g) (m—¢)] J(Si:iﬁ}?zf(lhsil-]:)zﬂg)

_ JL— ex( 4mh)] [1—exp (—4ng)]
— J(cos8) exp [ (h—g) (1—¢)] Pl L b el (o)

|7 | = exp [—2h(r—e)] S =)
= exp (2ke) exp [—2(h+g) 7] ;::ﬁg E:g:g;_;jﬁ , (6-10)
[¢|=]|t|secd. (6-11)

The phases, referred to the level z;, are given by

argr = —2arg (2ig)! +2arg (it +ig)! —2arg (ih—ig) !, (6-12)
argt = 2arg (ih+ig)! —arg (2ik)! —arg (2ig)!, : (6-13)
argr’ = m—2arg (2ih)! +2arg (1/z+1g) !+2arg (ih—ig)!, (6-14)
argt’ = = argt. (6-15)

In interpreting these expressmns it should be remembered that 4 = ke = 2n](A ),
where « is given by equation (4:8) and g = (k/x) cos . The expressions (6-8) to (6-15) for
the modulus and argument of the reflexion and transmission coeflicients of region I repre-
sent the effect of this region on the vertically polarized part of the wave. They are com-
bined in § 9 with corresponding coefficients showing the effect of region II.

A peculiar consequence of equations (6-8) to (6-11) should be noticed. Suppose that
¢—> 0, whilst gm, hr and (h—g) 7> 1. The first condition implies that Z, and therefore v,
are small, so we would not expect much dissipation of energy, i.e. absorption. The other
conditions imply that the change of ionization per wave-length is small, and the wave is
incident obliquely. Then from equations (6+8) to (6-11)

7|1, |¢]=0, |7|=0, 1#]>0. (6-16)

The first two of these relations show that a wave incident from below is almost perfectly
reflected, as would be expected, but the last two relations show that a wave incident from
above is strongly absorbed, which seems inconsistent. The explanatmn of this result will
be given in append1x 3.


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s A
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OBLIQUE REFLEXION OF LONG WIRELESS WAVES 479

7. THE DIFFERENTIAL EQUATIONS FOR REGION II
We define region II as being the region in which

» | Y|>Z, [Y[>1
and | X/Y | of order unity. - ‘

The equations (4:1) to (4-3) become

eikE,— - 3E, (7-1)
2
C}iEy—{—kzcoszﬂE w2, (7-9)

We observe that since / is now small, E, is negligible. As before, a special model ionosphere
is considered in which the electron density (proportional to X) increases upwards exponen-
tially with height. It is not necessary to assume, however, that the rate of exponential
increase is the same as in region I. We therefore write

%: +exp [y(z—2zs)],

where z, is the height where | X/Y | = 1, and where the two signs are included to allow for
the different signs of Y in the southern and northern hemisphere. Throughout this treat-
ment, the lower sign will refer consistently to the northern hemisphere. In order to simplify
the algebra, it is advantageous to work in terms of a reference helght z,, rather than z,,

where
zy = zs+77loge (2y/k).

X 4y? '
Thus 7= :i:%;« exp [y(z—2z,)]. (7-3)
As in the case of reglon I, it is convement to make a change of independent variable by
writing w = exp [2y(z—2z,)]. (7-4)

Let = k/2y,
e a=Fk/2y (7:5)

b = (kcos@)/2y.
dE dE dw ‘ dE

where 9 is the operator w(d/dw) In terms of the new 1ndependent variable w, (7-1) and (7-2)
become respectively (9+a2) E, = FiJ(u) E, (7-6)
and  (HB)E, =+i/(w ) " (7-7)

To eliminate E, from these equatlons we notice that

S/ (W) E,] = E,9J(w) +(w) 9E, = J(w) (9+3) E,
or J(w)9E, = (3—1) [/ () E,].
Thus J(w) E, — (9—3)* [/ () E,].

62-2


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

480 J. HEADING AND R. T. P. WHIPPLE ON THE
Application of this last equation to (7-7) gives
wE, = Fi/(w) (92402 E,
= [[@—$)2+0?] [FiJ(w) £,]

= [(9—2)*+%] (*+a%) E, (7-8)

and similarly wE, = [(9—%)%+a%] (9*+b2) E,. (7-9)
These two equations are of the general form

LF=(9—p,) (8—ps) (9—py) (9—p,) F = uF, (7:10)

where L is the operator (3 —p,) (% —p,) (#—p3) (9 —p,); and solutions of this equation will
be investigated in the next section.
Equation (7-10) is a generalization of Bessel’s differential equation. If we substitute
z = 2i,/w in Bessel’s equation ,
d?F  1dF ( n?

Wt () F=0

we obtain (92— 3n?) F = wF, (7-11)

which is similar to (7-10), but only of the second order. One fundamental set of solutions
of (7-11) is J,,(2i/w) and J_,(2i./w) if n is not an integer. It also has a second fundamental
set of solutions, the two Hankel functions H{V(2i,/w) and H?(2i,/w); and because

H,(zl)(z eﬂi) = —e—nmi Hr(l2)(z)’

this second set may be taken as H(2i,/w) and HP(2i,/w ¢i"). These Hankel functions have
simple asymptotic forms when the argument is large, and any boundary conditions to be
imposed for | w | large can be applied to these asymptotic forms.

Considerations such as these ean be extended to the generalized equation (7-10). Being
of the fourth order, there are four independent solutions, and by taking linearly independent
combinations of these four solutions other sets of four independent solutions can be formed.
§ 8 is concerned with three such sets. The first set is given by the four power series of (8-2),
and these represent, as shown in §9, the incident and reflected waves. The solutions of the
second set are given by the Barnes integral of (8:3) for various contours, and each are
shown by (8-4) to be respectively proportional to the set (8-2). The third set, given by (8-5)
for a further contour for the Barnes integral, is expressed as a linear sum of the four solutions
given by (8-4) (this third set is analogous to the Hankel functions). The boundary con-
ditions for large | w | can only be applied to this third set, and simple asymptotic forms for
this third set determine which of the four solutions satisfy the boundary conditions and
which do not. The reflexion coefficients are then found, in § 9, from the two solutions which
satisfy the required boundary conditions. In §9 also, the coupling existing between the
equations (7-8) and (7-9) is taken into account.

8. SOLUTIONS OF THE DIFFERENTIAL EQUATION (7-10)
The equation LFE=(3—p,) (3—ps) (3—p35) (O —py) F = wF (81)
is a special case of the generalized hypergeometric equation, treated by Copson (1933,
§10-6).


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OBLIQUE REFLEXION OF LONG WIRELESS WAVES 481
The equation can be solved in terms of four power series of the type
P,(w) = wht § (Dr—02)! (p1—03)! (p1—14)! w" (8-2)

w0 (1=patm)! (hr—ps 1) (Br—pstn) ! nl”
This sum is a generalized hypergeometric function, and written in standard notation the
lution i
sofution 18 Pi(w) = wh F3(py—po+1, pr—p5+1, pr—py+1; w),

together with three similar solutions.
To investigate the relation between the solutions, (8-1) may also be solved in terms of
Barnes’s integrals. Consider, for example, the Barnes integral

Io() = g | (1= 1) (5pp= D) (52— 1)1 (44— 1) e ds

1 4
= e o — | -$ .
= fcmjgl (s+p;—1)lw-sds, (8-3)

where C,, is one of the paths of figure 1 starting and finishing at iriﬁnity in the negative half-
plane. It can easily be shown that I(w) satisfies the differential equation (8-1); this will,
in fact, be shown by (8-4). The poles of the integrand are at the points

§=—p—n
§=—p,—n e .
n zero, or a positive integer.
ﬂ
.
L L J [ ]
<
L] L 4 L
<
[ ] L] L
‘-
® ° *

Ficure 1. Contours in the s-plane for the Barnes integral 8:3.

Consider the five paths C = C,, C}, C,, Cs, C, as in figure 1, and denote the corresponding
integrals by 1, 1,, I,, I5, I, respectively. Then
Iy=I1+1L,+1+1,
I, (w) = sum of residues of fI (s+p;—D!wsats=—p —n."
The residues are -

(—pr—n+p,—1)! (——ﬁ1(~f)z+{>3'-1>! (=pr=ntp=1)! .,
—)n+l gyl °
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This yields Li(w) = —(po—t1 =D (ps—pr— V! (pa— 1 — 1) Py(w), (8-4)
where P;(w) is defined in (8-2). Equation (8-4), together with similar ones for Iz, I, I,
verify that I(w) satisfies (8-1).

We need four independent solutions of (8-1) for the complete solution. The equation
LF = wkF is also satisfied by [(we?™). In particular, taking n = 0, 1, —1 and 2, the four
functions

Lw = L+ L)+ Lt Lw),
Lwedm) = QLw) + QLw)+ Qul(w)+ Q4I4(w)] (8:5)
Iy(we=27) = QpUIL (w) 4+ Q5 L (w) + Q5 L (w) + Q1 (w)>J
Iwetn) = Qhw)+ BLw)+ QBl(w)+ QHy(w),

form a new fundamental set, where
Q, = exp (2imp;).

When | w | is large, the integral /;(w) may be evaluated asymptotically by the method of
steepest descents, using Stirling’s formula as an approximation to the factorial functions.
The analysis, which is somewhat involved, is relegated to an appendix.

The results are as follows:

If @ Jw[=Max[L{ il | ol | sl £al]
(0) |argw|<4m,
Iy(w) ~ J2mhw=% ti/* exp (—4wt) exp [O(w?)].

For |argw | <2m, the real part of (—4wt) is negative, so | [y(w) | decreases exponentially
with w; while for |argw | >2m, the real part of (—4w!) is positive, so | Iy(w) | increases
exponentially.

The boundary conditions required for region II are that for waves which penetrate the
layer, i.e. for large |w |, the modulus of /, should decrease, and that the direction of pro-
pagation should be upwards. We must pick solutions from (8-5) which satisfy these con-
ditions; for which the dominant factor in the asymptotic form is exp (—4wt). For the four
solutions (8-5), this factor respectively takes the form

(a) exp(—4w?),
(6) exp (—4iu?) :
©  exp (4w,

(d) exp (4uwh),

where w is real.

(a) decreases upwards exponentlally, and is consistent with the upper boundary con-
ditions.

(b) represents a wave propagated upwards, and is consistent with the upper boundary
conditions. '

(¢) represents a wave propagated downwards, and must be rejected.

(d) increases upwards exponentially, and must be rejected.
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The complete solution satisfying the upper boundary condluons is thus a linear com-
bination of () and (b), namely, I(w) + AL (we?m), (86)
where A4 is a constant; and this combination is taken as representing F throughout the
region.

9. REFLEXION AND CONVERSION COEFFICIENTS FOR REGION I

We will now apply the general formulae obtained in the last section to (7-8) and (7-9).
Denote the p’s referring to (7-8) by p®, and those referring to (7-9) by p®. Similarly, denote
the various solutions of (7-8) by I®(w), and of (7-9) by I®(w).

Then for E,, from (7-8) PP = ia,
p(zx) ——
j)gx) =1ib+ %a
p(x) = —1b + 1
and for E, from (7-9) PV =ia+4,
p2y )=—ia+4% 2
pgy) = ib,
PP = —1ib.
It is necessary to see how the solutions behave below region II, that is, as
‘ w—>0,
or z—z, = (log,w)/2y >—c0, from (7-4).

F '2) and (8-
rom (B D ) e Py(w) ~ w0 — exp [2ypr(z— )

Then
I9(w) cwie = exp [2pia(z—2,)] — expl[ik(z—2,)],
IP(w) cw™ie = exp[—2yia(z—z,)] = exp [—ik(z—2,)],
IP(w) cw™ = exp[2y(ib+4) (z—2,)] = exp [y(z—2,)] exp [ik(z—2,) cosb],

IP(w) cc w™* = exp [2y(—ib+3) (z—2,)] = exp [y(z—2;)] exp [ —ik(z— 2,) cos ],
and
I9(w) cwiert = exp[2y(ia+}) (z—2)] = exp [y(z—2,)] exp [ik(z—2)],
I (w) o< wie+ — exp [2y(—ia+}) (2—2,)] = exp [y(z—2;)] exp [ —ik(z—2,)],
IP(w) cwl® = exp[2yib(z—2z,)] = exp [ik(z—z,) cosd], '
IP(w) cw™i = exp[—2yib(z—z,)] = exp [—ik(z—z,) cosd].
Thus for z<z,, I (w), I{(w), I¥(w), I’ (w) are negligible, and
I» représents the reflected E, field, E?,
I represents the incident E, field, E®,

I{ represents the reflected E, field, E,
I represents the incident E, field, E?.
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The connexion between the corresponding solutions for £, and E, is easily obtained in
the following way from the representation of the solutions in terms of the Barnes integrals.
From (8-3) ' 1

— J&) 2mni\ — _ x) 1)1 9p—S a—27nis
E, = I[P(we?m) = o H(s—{—j) Dlw—se ds,
where m = 1, 2,3,4. E, is then obtained from (7-6),

(92+a?) E, = FiJ(w) E,,

i.e. $1J( ) = ““(29‘2+d2>f H (S—l—[)(x) l)!w—s e—2mnis ¢

Cmj=1

— 1_ @) 1Y (2 2) 4= e—2mnis
= 27[1[0,“1_—[ (s4+p¥—1)! (s24a ) wse ds,

because # = wd/dw operates only on the factor w=:
FiJ(w) E,

because s2+a? = (s+ia) (s—ia) = (s+p¥) (s+p%),

221[ (sHA) (s (s+450 — 1)1 s+ — 1)t w e=2misds,

:Fl'\/(w) E = o f H (t‘l’"p(y) )'w_t\/(w> e~ 2mnit Cﬂmdt,

Cm j=
where s+ = ¢, not affecting the contour C,,. Thus
L) B, = () e 19w e,

Therefore E, = tie inm [ (we?mni),
when . E, = I®(we?n),
It follows that I (w) is associated with 41/ (w),

IP(w)  is associated with +i/{(w),

I (w ) is associated with Fiexp (2mipQ) IP (w),

IP(we?™) is associated with Fiexp (2mip’) I¥ (w).

Applying (8-6), the waves that contribute to the incident and reflected fields are in the
following proportions:

[14+A exp (2mip)] 19 (w) : [1 + A exp (2mip$)] I (1)
i+i[l—Aexp (2771[) ]I (w) 1 £i[1 — A exp (2mipP) ] [P (w),
which for | w | small give the proportions of

EPEP EP:E?,
namely, from (8+4)

[1+A4exp (—2ma)] (—2ia—1)! (—§+ib—ia)! (—F—ib—ia)!exp[ik(z—z,)]
:[1+Aexp (27a)] (2ia—1)! (—%+ib+ia)! (—}—ib+ia)! exp [ —ik(z—z,)]
:+i[1—Adexp (—2nb)] (—2ib—1)! (—}+ia—ib)! (—1—ia—ib)! exp [ik(z—z,) cos 0]
1+i[1—Adexp (2ad)] (216 —1)! (—4+ia+ib)! (—%—ia+ib)!exp [ —ik(z—2z,) cos O].
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From this set of ratios we can see the individual contributions from [(w) and I(w e?"%).
By taking their moduli, it can be seen that /;(w) represents an elliptically polarized wave,
with the sense of polarization maintained on reflexion. This wave is totally reflected, as the
layer is non-absorbing and no energy is being transmitted. This is analogous to the ordinary
component in the magneto-ionic theory. Similarly, I,(we?"i) represents an elliptically
polarized wave; but in this mode there is only partial reflexion, because as we saw at the
end of § 8, the asymptotic form .of [y(we?™) for large | w| represents a wave propagated
upwards, meaning a partial penetration of the wave. This corresponds to the extraordinary
component in the magneto-lomc theory.

It is the purpose of this paper to deal with the plane-polarized components of the wave,

and we now introduce the reflexion and conversion coefficients p,,, p,,, p,» p,, defined in§ 2.
IfE? = 0, A = exp (—2nb). Hence

 1texp[—2m(a+b)] (—2ia—1)! (—}—ia+ib)! (—}—ia—ib)!
Pw= T Texp[2n(a—b)] (Zla—1)!(—L+ia+ib)! (—3-+ia—ib)! ’

_ +i[1—exp (—4mbd)] (—2ib—1)! (—4—ia—ib)!
P = T rexp[en(a—b)] (Zia—1)! (—%-+ia+ib)! °

IfEP =0, A =—exp (—2na). Hence
_ l—exp(—4ma)  (—2ia—1)! (~3—ie—ib)!
P = Tl +exp [2n(b—a)]} (2i6—1)! (—L-Fia+ib)!
_ 1+exp[—2a(a+b)] (—2ib—1)! (—}+ia—ib)! (—§—ia—ib)!
Puw = 1+exp[—2n(a—b)] (216—1)!(—%+ia+1b)! (—%—ia+ib)! ~

The moduli and phases referred to the level z, are

cosh7(a+b)

1+exp[—2m(a+b)]
| D | =CXP(—2M)W Pl (

1+exp[—2m(a—b)]’ (9-1)

=exp[—2n(a—"b)]

exp [—m(a+b)] ./(sinh 2ma sinh 27b)

[P | = Jcos cosh7(a—b)
_exp[—m(a—b)] J{[1—exp (—4ma)] [1 —exp (—4nb)]} (9-2)
Jcos 1+exp[2m(a—b)] ’
| Pyl = | Py | cOS, (9-3)

coshm(a+b) 1+exp[—2m(a+d)]

| Py | = exp (—2m) coshm(a—b)  1+exp[—2n(a—b)]’ (9-4)
arg p,, = m—2arg (2ia)! —2arg (ia—ib—4%)! —2arg (ia+ib—3)!, (9-5)
argp,, = :Fg—arg (2ia)! —arg (2ib)! —2arg (ia+ib—3%)!, (9-6)
argp,, = £m-+arg s, (97)
argp,, — m—2arg (2ib)! +-2arg (ia—ib—$)! —2arg (ia+ib—§) . (9-8)

The expressions (9-1) to (9-8) giving the modulus and argument of the reflexion and
conversion coefficients suffice to describe the effect of region IT on the wave. In interpreting

VoL. 244. A. 63
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them, it should be remembered that a = £/2y, b = (£/2y) cos 0, where y is given by equation
(7-3).
10. THE COMBINED EFFECT OF THE TWO REGIONS, AND THE
DEDUCTION OF THE OVERALL REFLEXION COEFFICIENTS

Consider now what happens when a plane wave is incident from below on an ionosphere
of the type hitherto considered; that is, regarded as containing two separated regions
having the properties stated in §3. In each region separately, the ionization density is
taken to increase exponentially with height, though not necessarily with the same exponent,
so that the transmission and reflexion coefficients of the regions have the values deduced
in the previous sections.

We shall also require to know how the wave is propagated in the space between regions
I and II. This space is characterized by the conditions X/| 1—iZ|>1 and | X/Y | <1. The
propagation equations are the limiting forms taken by the equations for region I towards
the top of the region, that is, for X/| 1 —iZ | large; and these forms are the same as assumed
by the equations for region II towards the base of the region, that is, for | X/Y | small. The
forms taken by (7-1) and (7-2) below region II, where | X/Y | is small, are

d2E,

dzz"—HcZEx =0, (10-1)
2
c(liZEZ‘y—ch cos?0k, = 0. (10-2)

The solutions of these two equations will be used to connect the reflexion coeflicients of
region I referred to the height z;, and the reflexion coeflicients of region II referred to the
height z,. Evidently from (10-1) and (10-2) the factor exp [ —ik(z,—z,)] must be introduced
for E, waves between the two levels, and exp [ —ik(z,—z;) cos 0] for E, waves.

In the free space below the ionosphere it is supposed that the incident wave in the (x, z)
plane makes an angle ¢ with the vertical (z-axis) and is polarized with its electric vector in
the (x, z) plane. Its field is therefore

E, = cos 0 exp [ —ik(zcos 0 +xsin0)] exp (iket),
E, = —sin0 exp [ —ik(zcos 0+ xsin )] exp (ikct),
E,=0.
The wave which is finally returned from the ionosphere, after due account has been taken
of the effects of the two regions, may be represented by
E. =R, exp (—2ikz,cosf) cosf exp [ —ik(—zcos 0+ xsinf)] exp (ikct),)
E, =R,  exp (—2ikz,cosl) sinf exp [ —ik(—zcos @+ xsinf)] exp (iket), (10-3)
E, = R, exp (—2ikz, cos¥)) exp [ —ik(—zcos §+xsin0)] exp (ikct),

where R, and R, are factors to which we shall give the names ‘overall reflexion coeffi-
cient’ and ‘overall conversion coefficient’ respectively. The factor exp (—2ikz, cosf) is
introduced throughout so that R,, and R, are referred to the height z,. By considering the
successive reflexions between regions I and II, but neglecting waves which have been
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reflected one or more times by the ground, it can be seen that R, and R, are given by the
following infinite geometrical progressions:

R, =r+ip,t exp[—2ik(zy—2)] +tp,. 70, b €xp [ —4ik(zy—2)]+ ..., - (10-4)

R, = tp,, exp[—ik(z,—2z,) (1+cos0)] +tp,.7'p,, exp [ —2ik(z,—2;) (1+cosO)] +....
(10-5)

If | p,,7" | <1, R,, is represented with sufficient accuracy by the first two terms, R,, by the
first term of these series. ‘
If the incident wave in the free space below the ionosphere is represented by

E, = exp[—ik(zcos 0 +xsinf)] exp (iket),
E =FE, =0,

so that the electric vector is perpendicular to the plane of propagation, then it may be shown
that the corresponding coefficients are given by

R, = p,t exp[—ik(z;—z,) (1+cosd)], (10-6)
R,, = p,, exp [ —2ik(z,—2z;) cos d]. (10-7)

In applying formulae (10-4) to (10-7), it is sufficient to calculate #,/secf = #',/cos ¥
(see (6-7)) rather than #, ¢ separately, and p,,./cosd = —p,,./sec (see (9-3) and (9-7))
rather than p,, and p,,, since in formula (10-4) we can write

ot = (tfsecO)?py
and in (10-5) or (10-6)
tloxy = _pyxt, = (tN/SCC 0) (pnyCOS ﬁ)

We note also that R,, = —R,,.

The coefficients R,,, R,,, R,,, R, thus represent the overall reflexion and conversion
coefficients of the whole ionosphere, and include the effects of both regions I and II. The
moduli of the R’s represent the amplitudes of the downcoming waves and their arguments
represent the phases. These phases are related to the apparent height of reflexion, and in

the next section we shall consider what can be deduced from them about this height.

11. APPARENT HEIGHT

For the measurement of the apparent height of reflexion on long and very long waves,
the simplest method is that of the ‘ Hollingworth’ interference pattern (Hollingworth 1926).
In this method, measurements are made on the interference pattern formed at the ground
by the combination of the ground and downcoming waves. In its most usual form the
amplitude | E, | of the resultant vertical electric field is measured as a function of distance
(x), and the product | E, | x is plotted against x so as to remove the inverse distance factor
appropriate to the spreading of waves in free space. The curve shows characteristic maxima
and minima, and it is usual to describe it in terms of a fictitious model ionosphere in which
reflexion takes place at a sharp boundary, at a definite height, and possibly accompanied
by a phase change. .

Suppose the upgoing wave to be polarized with its electric field in the vertical plane, and
observations to be made on this same component of field in the downcoming wave. The

63-2
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appropriate reflexion coefficient is the one which we have called R,,, and we shall write
¢ = arg R,. If ¢ is independent of the angle #, we may describe the experimental results
in terms of a fictitious horizonal reflector. If, however, ¢ depends on §, we must explain the
results in terms either of a reflector whose height, or whose phase-shift, depends on 6.

Equation (10-3) gives the relative phase of the reflected vertical component of the field;
for brevity denote arg £, by x. Then

X = ¢—2kz, cosf—k(—zcosf+xsinf),
omitting the kct. Taking the transmitter at the origin, and measuring the phase of the
reflected wave at the ground where z = 0, then ‘
X = x(,0) = ¢—2kz, cos —kxsin . (11-1)

As shown by Hartree (1931), the emitted wave may be resolved into trains of plane waves
travelling in different directions. Each plane wave gives rise to a plane reflected wave which
will reach the receiver, but only those for which the phase is stationary with respect to the

“direction of the wave normal will contribute appreciably to the resultant field there. The
value of ¢ which will contribute most to the effect at the receiver is the root of

dx/d0 = 0 (11-2)
or 0¢/00 4 2kz, sin 0 —kx cos § = 0. (11-3)

Denote this value of by 0,. The apparent height z, is defined for the purpose of this paper
as the height which the ray would have reached if it had been reflected sharply at an angle

of incidence 4, i.e. . 2, — txcotd,. (11-4)
Solving (11-3) for x, and substituting in (11-4),
- cosecl,[d¢ 1 d¢ ]

6=0

Ze 5 = 2k ﬁ 5=0a: _975 0(cos_)

1 = d¢
“*ﬂﬁ%&%&%e%’ (11-5)
when ¢° is expressed in degrees. Note that z, = z; only if
[04/06)-0, = 0.

Experimentally, the angle 0,, and hence from (11-4) z,, might be measured as follows.
The total rate of change of y in (11-1) with respect to x is

dy_ oy, x0
dv  dx  000x
But from (11:2) [dx/d0]s-0, = 0; hence
dy .
CTxX~=£¢C=—ksmﬁa (11-6)

from (11-1). Since x could be found experimentally as a function of #, the angle of in-
cidence 6§, can be derived from (11-6). It is interesting to note that dy/dx could be mea-
sured with a spaced loop direction finder modified to receive the sky wave only, and also
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0, could be measured by comparing the field measured by a vertical loop aerial and a
vertical aerial as in ‘sense’ measurements in direction finding ; but both methods are subject
‘to experimental difficulties.

12. THE PARAMETERS DESCRIBING THE IONOSPHERE

In §13 we shall present, in graphical form, the results of numerical calculations for a
model which approximates to that of the lowest part of the ionosphere. In this section we
discuss the magnitudes of the parameters used to describe this part of the ionosphere.

We assume that-the electron density, and hence X, is distributed as in the ‘tail’ of a
Chapman (1931) region, and hence we write, using an approximation given by Budden,
Ratcliffe & Wilkes (1939), which holds in the lowest part of such a region,

X = X,exp{—}exp[—(z—z,)/H]} (12-1)

where H is the scale height of the atmosphere, and z, is the level at which the maximum
ionization occurs. We assume that the collision frequency, and hence Z, is given by

Zyexp (—z/H).

Region 1
We now use (12-1) to find a value for the quantity « (see (4-8)) in terms of the scale height
H in region I. This region is situated near the level z;, where | X/(1—iZ) | = 1. If X and
Z vary in the way described above, the rate of variation of X is so much greater than that
of Z that we can assume Z to be constant over region I. We define ¢ as the value of

arg [X/(1—iZ)]

at the height z = z,. For heights near z;, for which (z—z,)/H is small, we can rewrite (12-1)
in the following form:

X=X, exp{——%exp I:_ (z ;IZI) _ (z gzo):l}
éxoexp{_z(l_%zl) e[ 2150

e B e

When z = z), X=|1-iZ|,
and (12-2) becomes X, exp{ expl: :I} |[1—iZ]|.
Rearrangement gives
—1—ex |:—— (ZI—ZO)] = l—lo X a
oH *P H H®1=iz] =%

this being the definition of a.
~Substitution in (12-2) gives
X = | 1—iZ] exp[u(z—2,)],

or T—:Y—IZ— = exp (i¢) exp [a(z—z;)]- (12-3)
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Table 1 shows the numerical magnitudes of the quantities required to describe region I.
The magnitude for H is taken from recent experimental work (Best, Havens & La Gow
1947). The value of X, = p3/p?is derived from the assumption that the penetration frequency
po/2m of the E layer is 1-27 Mc/s. (z,—2z,) is calculated from (12-1), by assuming that X =1
at z = z,. It should be pointed out that, for simplifying the numerical computations, z,
and « have been calculated for Z = 0, and these values have been used even when the colli-
sion frequency is appreciable, as it was found that for the values of Z used it was the ¢ terms
and not the otherwise slight variation in « that affected the calculated coeflicients. The
value (5x10%s71) taken for v is such as to make ¢ = {n for a wave frequency of 80kc/s.
If v had been taken much greater, then the approximations needed in § 3 for the separation
into two regions would not have been valid up to 80kc/s. It is probable that these assump-
tions about » will only apply to winter night conditions.

TaABLE 1

f 16 ke/s 80 kc/s

A 1875 km 375 km
k=2m/X 0-335 km™! 1:675 km—1

H 6 km 6 km

X, 105 4% 103
Zy—2; 18-82 km 16-85 km

a 1-92 km~! 1-38 km-!
h=Fk|a 0-174 1-21

€ 1w (approx.) 3

Region II

We define z; by the relation X(z;) = | Y|, so that from (12-1),
zy—2zy = Hlog, (21og. X,/| Y |),

and if (z—z,)/H is small, this gives us, as before,

X [(z—zs) XO]
=t = €X log, .
7]~ Pl H 5T

We now introduce ¥, as defined in § 7,

1 X,
V= ITIIOge Y]
In §7 it was convenient to work in terms of (z—z,) rather than (z—z,), where

— 21 2100 X
Z, -—z3+yloge 7

Then = e e—2)]. (12:4)
RAEN
Table 2 shows the numerical magnitudes of the quantities needed to describe region II.
Here z,— z, is calculated from (12:1) by writing X = | Y| at z;, and z;—z, follows by com-
parison with table 1. z;—z, is the distance between the levels which define regions IT and I;
but although phases are referred to the level z, for region I, they are referred to z, and not
z for region II.
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TABLE 2
¥ 16 kc/s 80 ke/s
X, 105 4%10°
| Y 80 16
X/ Y| 1250 250
Zy—24 1594 km 14-41 km
Zg—2, 2-88 km 2-44 km
y 1-19 km-1 0-92 km~!
a=k[2y 0-140 0-91 -
Zy— 24 3:31 km 0-205 km
Zy—2, 6-19 km 2-64 km
k(zy—2z,) 2-07 radians 4-42 radians
(=118-6°) (=253-3°)

The assumed distribution of X with height, and the heights z,, z, and z; are shown for
frequencies of 16 and 80 kc/s in figures 23 and 24 respectively. The approximations appro-
priate to regions I and II respectively hold inside the areas shaded in the figures. The
tangents at the heights z; and z; show the approximations

X =expla(z—z))],
X=|Y|exp[y(z—z5)],

used in this analysis. In both figures, X changes by a factor of order 5 before the approxi-
mations are seriously in error. ‘

13. GRAPHICAL REPRESENTATION OF THE RESULTS

The model ionosphere discussed in the previous section, having the parameters listed in
tables 1 and 2, has been used in a series of numerical calculations made for the purpose of
illustrating the results of the theory. The calculations were made as follows. The reflexion
coefficients (p,,; £y Oyes Pys 7> 7') and transmission coefficients (4, ¢') for the two regions were
calculated from the expressions given in §§ 6 and 9. In order to calculate the interference
effects produced by the combination of the waves reflected from the two regions, use has
been made of (10-1) and (10-2), which show that for the vertically polarized component the
effective path difference between the reference levels z, and z, is (z,—z,), whereas for the
horizontally polarized component it is (z,—z,) cos 6. ‘

For the calculation of the phases, numerical values are required for functions of the forms
arg (iy)! and arg (iy—1)!, where y is real. Stieltjes (1886) has given values of arg (iy)! for
y = 0(0-2) 4. The values required lie in this range, and can be obtained graphically or by
interpolation from his values. To calculate arg (iy—$)!, a direct application of Legendre’s
duplication formula (Copson 1935, § 9-23) gives

arg (iy—})! = arg (2iy)! —arg (iy)! —ylog, 4,

the range of this being y = 0(0-2) 2 calculated from Stieltjes’s values of arg (iy)!. For larger
values of y, arg (iy—%)! can be calculated from its asymptotic form. A short table is given in
appendix 2 of arg (iy)! and arg (iy—1)! for y = 0(0-2) 4.

The results are presented graphically in figures 2 to 22, pp. 495 to 498, for the two
frequencies 16 and 80 kc/s. The graphs show the way in which various quantities vary with
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the cosine of the angle of incidence of the wave, and ordinates corresponding to angles
of 0, 30, 60 and 90° are indicated. The horizontal scale is (1—cos @) on all graphs.*
Region I exerts no influence on waves polarized with their electric vectors perpendicular
to the plane of incidence. Waves polarized with their electric vectors parallel to the plane
of incidence correspond to reflexion coefficients.r, 7'; and transmission coefficients ¢, ¢';
and they remain polarized with their electric vector in the plane of incidence. The trans-
mission coefficients for upgoing (¢) and downgoing (¢') waves are related by the expression

tJsecld =t /cosd.

In figures 2, 3 and 4, which are drawn for the frequency of 16 kc/s, curves are shown for
the two cases where
(@) €=0, corresponding to Z<1 or v<p,

(6) €= %m, corresponding to | Y [>Z>1, orv>p;

and it is seen that the magnitudes are only slightly different for these two values of ¢. This
occurs because the thickness of region I is only a fraction of the wave-length when the
frequency is 16 kc/s, so that the coefficients depend principally on the magnitude of
the discontinuity in the effective refractive index, and not on the detailed nature of
the transition.

'The phases of the two transmission coefficients and of the upwards reflexion coefficient
are very small for all angles of incidence, while the phase of the downward reflexion coefhi-
cient is very close to 7. )

Figures 12, 13 and 14 are drawn for a frequency of 80kc/s, both for ¢ = 0 and for ¢ = 1=.
The reason for the choice ¢ = {nis that the collision frequency has been taken to be the same
for both frequencies; this was discussed in connexion with table 1, §12. It would be impos-
sible to use ¢ = 4w for 80kc/s, since the relation ¢ = tan~! Z would require Z to be large, in
conflict with the requirement | Y |>Z (Y = 16 for 80kc/s) necessary for the splitting into
two regions. For this frequency, and for both values of ¢, the downward reflexion coefficient
is negligibly small. It will be noted that there is a marked difference between the reflexion
coefficients for ¢ = 0 and ¢ = }w; this arises from the fact that the thlckness of the region is
comparable with the wave-length at 80kc/s.

Waves of both polarizations are reflected from region II and both have their polariza-
tions altered by reflexion, so that both reflexion and conversion coefficients are significant.
The two conversion coeflicients are related by the equations

‘pxy | Jeosd = ’pyx | Jsecd,
and argp,, =+ m4-arg Pz

The curves of figures 5 and 6 show how the magnitudes and phases of the coefficients vary
with angle for the waves of frequency 16 ke/s, and figures 15 and 16 relate to a frequency
of 80kc/s. Since Z does not enter into the equations of propagation for this region (see (7-1)
and (7-2)), the curves are valid for all values of ¢ consistent with the condition | Y |>Z.

* The advantage of using (1 —cos 0) rather than @ for the horizontal scale, is that most of the graphs
approximate more closely to straight lines in this form, and calculation of the apparent height by graphical
differentiation is simplified.
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The next series of curves relates to the resultant downcoming wave as it arrives at the
ground after modification by both the regions. The calculations leading to these curves
were made from the formulae given in § 10, using the coefficients shown in figures 2 to 6
and 12 to 16 for the two regions separately. Figures 7 and 8 show the magnitudes of the
reflexion and conversion coefficients R,, and R, for 16kc/s, when ¢ = 0 and ¢ = m respec-
tively. R,, can be obtained from the relation

| Ry | = | Ry,

and since region I has no influence on a wave with its electric vector along the y-direction,
we have IR, = sy
=1p yy |

and its magnitude can be obtained from figure 5. Figures 9 and 10 show the phases of these
coefficients. In figure 11 the ‘apparent’ reflexion heights, as deduced by applymg (11-5)
to the curves of figures 9 and 10, are shown for the different reflected waves.

The following features are noticeable in the curves of figures 7, 8, 9, 10 and 11, drawn
for waves of frequency 16 kc/s.

(a) Thereflexion and conversion coefficients vary monotonically with angle of incidence,
and do not show a minimum for some intermediate angle.

(b) There is no radical difference between the case when ¢ =0 (v =0) and ¢ = 7
(v large).

(¢) The apparent height of reflexion is remarkably independent of the angle of incidence.

Figures 17, 18, 19, 20, 21 and 22 refer similarly to waves of 80 kc/s. The following points
are noticeable.

(a) The reflexion coefficient | R,, | (figures 17, 18) passes through a minimum at some
intermediate angle of incidence. Though reminiscent of the behaviour of optical waves
near the Brewster angle, there is no connexion between the two phenomena. The Brewster
effect is purely a reflexion effect at a plane surface, but in figures 17 and 18 the minimum
arises through the interference between the waves reflected from the two regions. The mono-
tonic variation of | R,, | with angle ofincidence for 16 kc/s in figures 7 and 8 is strictly speaking
an interference eﬁ'ect, and variations in the parameters describing the ionosphere will
alter these interference effects considerably. This minimum is accompanied by a rapid
change of phase (figure 20), which in turn leads to quite important changes of apparent
height (figure 21) as the angle of incidence is varied.

(b) The magnitude and phase of R,, depend quite considerably on the value of ¢, but
the minimum effect occurs both for ¢ = 0 and ¢ = .

(¢) The magnitude of | R,, | differs little in the two cases, and the phases of the other
coefficients are independent of the value of e.

(d) For the other polarizations, the apparent height does not change much w1th angle
of incidence.

We conclude with a brief comparison with experimental results; for a complete survey
of these results the reader is referred to Bracewell, Budden, Ratcliffe, Straker & Weekes
(1951). Comparison is made for night-time conditions only. A qualitative comparison only
can be given; a quantitative comparison would depend more critically on the Values of
the parameters chosen in § 12.

Vor. 244. A. 64
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Experimentally, the reflexion coefficient | R, | is of the order 0-5 on 16kc/s, and of the
order 0-4 on 80kc/s measured at a distance of 90km from the transmitter. For larger
distances, | R,, | increases slightly with increasing distance for 16 kc/s, and | R,, | for 80kc/s

‘increases to about 0-5 at approximately 1000 km from the transmitter. The theory predicts
the gradual increase of | R, | for 16 kc/s (see figure 8), and likewise figure 18 demonstrates
the increase of | R,, | for 80kc/s with large angles of incidence, once the dip is passed. We
can make no statement concerning this dip (caused by interference between the two regions) ;
results of observations on vertical and oblique incidence propagation during the same night
are not available.

Experimentally, it is found that at vertical incidence, | R, | decreases slightly with in-
crease of frequency under night-time conditions. The theory does not predict this decrease;
for at vertical incidence | R,, | = | p,, | tends asymptotically with frequency to the value of
0-5 (see (9-1)). This lack of agreement can be accounted for either by assuming, as suggested
in § 1, that there is an absorbing region at a level below those considered in this paper, or
by the fact that there is a slight effect in region II caused by the collision frequency; but
the approximations needed for the two regions to separate demand that this collision fre-
quency should be neglected.* For vertical incidence only, Stanley (1950) has given the
complete solution for the case of an exponential variation of electron density with height,
and his formulae show there is no asymptotic approach to the value 0-5 provided the
collision frequency is sufficient.

Experimentally, the apparent height corresponding to R,, is known within 5km to be
the same for 16 and 80 kc/s as measured at a distance of 90km. For angles of incidence up
to 65° on 16 kc/s, the apparent height is constant, but for angles greater than 65° results
cannot be obtained, due to the multiple reflexion of waves and to fading. For frequencies
near 80kc/s the results analyzed so far for night-time conditions suggest that the apparent
height falls slightly with increase of angle of incidence for angles greater than about 45°.1
Theoretically, figure 11 suggests this constancy of height for 16 kc/s, and figure 20 shows
a fall in the apparent height for angles of incidence well away from the vertical. No results
are available to verify the rapid change in height very near the vertical.

It is interesting to notice that the only one of the four overall coefficients that is indepen-
dent of the lower region is p,, (see (10-7)); information about the character of region II,
free from the effects of region I, could be obtained from this coefficient; but it is just that
coefficient which cannot be measured experimentally with existing transmitters.

* Tt should be remembered also that we have assummed that the earth’s magnetic field is vertical; i.e.
the theory developed in this paper only refers to high geomagnetic latitudes.

1 The authors are indebted to Dr K. Weekes for a private communication concerning his analysis of
80 kc/s.
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Region I, 16 kc/s
10

075

05

025

0 1 | Io - e | | | ]
0° 30° 60° 0 90°0° 30 60° 9 90°0° 30° 60° 0 90°

Ficure 2 FIGURE 3 Ficure 4

FiGure 2. The modulus of the upward reflexion coefficient. (To within 1°, the phase of r referred
to height z, is zero.) (@) e=0; (b) e= 3.

Ficure 3. The modulus of the downward reflexion coefficient. (To within 1°, the phase of #’ is 7,
when referred to height z,.) (a) €=0; (b) e=4m.

Ficure 4. The modulus of the transmission coefficients, ¢4/sec 6 =¢4/cos 6. (To within 1°, the phase
of # and ¢ is zero when referred to height z,.) (a) €=0; (b) e=4m.

Region II, 16 kc/s
1-0

0-75

05

0-25

] ] ! | l
0° 30° 60° 0 90° 0°  30° 60° 0 90°
Ficure 5 FiGure 6

Ficure 5. The moduli of the reflexion and conversion coefficients.
(@) |puwls (B) lele (©) ]pxlecosﬁ=|pyx|«/sec 0.

Ficure 6. The phases of the reflexion and conversion coefficients referred to height z,.
(@) arg p; (b) arg py,; (¢) arg p,,; (d) arg py,.
64-2
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Overall reflexion, 16 kc/s

a | a
(1
¢
= > d
b
d
| ] ] ] ] ]
30° 60° 0 90° 0° 30° 60° 9 9 0°  30° 60° 0
FIGURE 7 FIGURE 8 Ficure 9
200°- 5
4F 3
c
100 7 i} 3+
-
2r d
0 I
b
Unilill)
—— sl
-100° ] I ] 14y ] ]
0 30 60° 9 90° 0° 30° 60° 7] 9(0°
Ficure 10 Figure 11

Ficure 7. The moduli of the overall reflexion and conversion coefficients, showing also the
moduli of the two separate parts of R,, (for the case €=0). (a) |R,[; (6) |R,,|=|R,.|; (¢) |7];
(@) [tout |- Note |R,,[=1p,, -

Ficure 8. The moduli of the overall reflexion and conversion coefficients, showing also the
moduli of the two separate parts of R,, (for the case e=4}m). (a) |R,|; () |R,,|=|R,.|; (©) |7];
(d) |tp,t'|. Note |Ryy|=|,?yy|.

Ficure 9. The phase of the overall reflexion coefficient R,, referred to height z,. (a) arg R,,, €¢=0;
(b) arg R, e=4m; (c) arg {ip,t" exp [—2ik(z,—2z)]}.

Ficure 10. The phase of the overall coefficients referred to height z;, for ¢=0 and e=3}n.

(a) arg R,,; (b) arg R, ; (c) arg R,

yy?

Ficure 11. The apparent height corresponding to the overall coefficients, measured with respect
to thC height zl' (a) (za[z)xx’ 6=O; (b) (Zap)xx’ €=lﬂ; (6) (za[))yy; (d) (zap>xy= (zap)yx°

90°
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Region 1, 80 kc/s

1-0 600

40°
075

0-5

025

o/ |

1 L ' |
0" 30° 60° 6 90°0° 30° 60 6 90° 0> 30° 60° ]

Ficure 12 Ficure 13 Ficure 14

Ficure 12. The modulus of the upward reflexion coeflicient. (The modulus of the downward
reflexion coefficient ' is negligible both for e=0and e=}7.) (a) €=0; (b) e=4m.

Ficure 13. The modulus of the transmission coeflicients, ¢4/sec 6 =1¢"4/cos 0. (a) €e=0; (b) e=4m.

Ficure 14. The phases of the reflexion and conversion coefficients, both the ¢=0 and e=3m,
referred to height z,. (@) argr; (b) arg t=arg ¢

Region 11, 80 kc/s

1-0
400F a

b v
2000A

0-75

0-5

0-25

| 1 | i
0° 30° 60° ) 90° 0° 30° 60° 6 90°

Ficure 15 Ficure 16

Ficure 15. The moduli of the reflexion and conversion coefficients. (a) |p.|; (8) |p,,l;
(6) lpxyl'\/cosazlpyxl'\/sec 0.

Ficure 16. The phases of the reflexion and conversion coefficients referred to height z,.
(a) arg p,; (8) arg py,; (c) arg p,,; (d) arg p,,.
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Overall reflexion, 80 kc/s ‘
— 200°
d
= 150°F
100 b
L a
- 50°__
‘ d b c
] 1 I ] !
90° 0°  30° 60° 0 90° "0° 30° 60° 0 9(0°
Ficure 17 Ficure 18 Ficure 19
200 3r
a
0° —
b
-200° B
1-40(° | ] I 0 ] | R .
30° 60° 6 90° 0° 30° 60° 0 90° 0° 30° 60° 6 90
Ficure 20 Ficure 21 Ficure 22

Ficure 17. The moduli of the overall reflexion and conversion coefficients, showing the moduli of
the two separate parts of R,, (for the case €=0). (a) |R,.|; (8) |R,,|=|R,.|; (c) |7]; (d) |tput’]-
Note |R,,|=]|p,,|-

Ficure 18. The moduli of the overall reflexion and conversion coefficients, showing the moduli
of the two separate parts of R,, (for the case e=3}m). (a) |R,|; (b) |R,,|=|R,|; () |7|;
(d) Itpxxt'l'

Ficure 19. The phase of the overall reflexion coefficient R,, referred to height z,. (a) arg R,,, e=0;
(6) arg Ry, e=1m; (c) arg r; (d) arg {ip, ¢’ exp [ —2ki(z,—-2,)]}-

Ficure 20. The apparent height corresponding to the overall coefficient R,, measured with
respect to the height z,. (a) €=0; (b) e=}m.

Ficure 21. The phases of the overall coefficients referred to height z,, for e=0 and e=}mn.
(a) arg Ryy; (6) arg R.; (¢) arg Ryx. .

Ficure 22. The apparent height corresponding to the overall coefficients, measured with respect
to the height z,. (@) (24),,5 (8) (Zap) sy = (Zap) ysr
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Distribution of electron density

14 -12
4 N
) /// y
N 2\ | K
16RO S S ' g
>4 N\
-18F \ )" o B ~16 | 2 _
\gl = g ) al 5
& 7 o
< ’ P =
-20 1 ] 1 J -18 o + L 1
01 1-0 10 100 1000 01 10 10 100

X (on logarithmic scale)

Ficure 23 Ficure 24

Ficure 23. The variation of X at the bottom of a Chapman region, showing the exponential
approximations (the tangents to the curve) valid in the two regions; for 16 kc/s.

Ficure 24. The variation of X at the bottom of a Chapman region, showing the exponential
approximations (the tangents to the curve) valid in the two regions; for 80 kc/s.

APPENDIX 1. ASYMPTOTIC FORMULA FOR J(w)

In this appendix, we obtain the asymptotic formula for the function /,(w) defined by
the integral (8-3). Define

4
Jis) =log| w ot (s+4-1)1]; (A.1)
then the integral to be evaluated is
1 _
I(w) = 5 [ expLAis)]ds (A.2)
Co

Since the path C, (unlike the paths C,, C,, C;, C,) need not be drawn near the negative real
axis, Stirling’s formula may be used to evaluate the factorial functions. Stirling’s formula

states that if
[U[>1 and |argU|<m,

then U1~ J(2m) (U+ ) exp[—(U+1)].
Therefore log U! ~ log 2n+ (U+ %) [log (U+3) —1], (A.3)

d
dUlogU’~log(U+§)

alog Ui~ 1/(U+3). (A. 4)

Using (A. 3), f(s) defined in (A.1) may be expressed as
J(s) ~2log 2m+%;(s+p;—4%) [log (s+p;— %) — 1] —slog w. (A.5)
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The integral (A. 2) will now be evaluated by the method of steepest descents. It is neces-
sary to know the saddle points of f(s), which are given by the roots of the equation

J'(s) =0,
and the values of f(s) and f”(s) at these points. Differentiating (A. 5),
S'(s) ~ Zlog (s+p;—4) —logw

= log [IL;(s+p;—4) /], (A.6)
and J(8) ~ 21/ (s+p;—3). (A.7)
The saddle points are therefore included amongst the roots of the equation

IL(s+p,—3) = w.
If Jw|>Max[| py |, | p2 |, | £515 | £4], 1], these roots are given by
5 =5, = wtexp (ymmi) +4—1Z; p; +O0(w™?).

On substituting this result into (A. 6), it can be seen that only the root s, corresponding to
m = 0 is admissible, the other roots making f”(s) equal to 2mmi. Provided |argw | <4, this
saddle point falls in the part of the domain of s where Stirling’s formula is applicable. It is
possible that there may be other saddle points near the negative real axis, but as the contour

C, need not be drawn near these, this is immaterial. To evaluate f{s) at this saddle point,
substitute

s=sg~wt+3—12p;
into equation (A. 5), and rearrange to obtain
J(s0) ~2log 2m+(s,—3) [log IL;(so+p;— §) — 4] —sologw+ X p,[log (so+p; — %) —1]-
But IL(sy+p,—%) = w
and log (s, +/’j —3) ~log (w+p;— 1Zcpy)

~ tlogw+ (p;— 1y py) [w'
Therefore

J(so) ~2log 2m+ (so—1) (logw—4) —s,logw
+2p;(Flogw—1) +[Z; 7 —1(Z; )] fw'.
If | w | is sufficiently great, the last term is negligible. Therefore
S(so) ~2log 2m—}logw—4(wt — 31X, p,) + Z; p; (1 logw—1) + O(w~t)
= 2log 2m— (4 — 1, p;) log w— 4w+ O(w™?).

It follows that  exp [ f(s,)] ~ (27)2 w™i~%% exp (—4w?) exp [O(wH)]. (A.8)
Also from (A.7), S (50) ~ 25 1/(so+p;—3%) ~ 4w+ 0(w™H). (A.9)
Hence applying the method of steepest descents,

Iyw) ~ gz exp Lflso)] [ exp 4" (s0) 2] du
— g-explflso)] | exp[—4f"(s) 07T d

— o exp [f(so)] V27l (50)]:
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Substituting the values of exp [ f(s,)],./"(s,) from (A.8) and (A.9), we obtain the required
integral Iy(w) ~ /(2) mw=¥%ti exp [ — 4wt].

This formula has been derived on the assumption that | argw | <4m, but a more careful
analysis would justify a limiting process to arg w = 47. Thus, if w is real and positive,

Iy(w) ~ J(2) m+585 exp [ — 4] exp [O(w )],
Tweti) ~ J(2) wexp| 7 (—§+3p,) |utvisn exp [ diut] exp [0 )],
Twes) ~ (@) atexp |~ (— 343 | w451 exp [4wH] exp [O(w )],
Io(we¥7) ~ J(2) ' exp [im( — -+ 5p,)] w485 exp [ 4] exp [O(w)].

APPENDIX 2. TABLE OF ARG (iy)! AND ARG (iy—1)!

The following table gives the arguments in degrees, being correct to the second decimal
place.

y arg (iy)! arg (iy—4)!
0-0 0 0
0-2 — 643 —21-32
0-4 —11-87 —37-34
0-6 —~15-63 — 4735
0-8 —17-43 — 5273
1-0 —17-28 —54-72
1-2 —15-32 — 5413
1-4 —11-70 —51-46
1-6 — 662 —47-05
18 — 019 —41-16
2:0 743 —33-95
2:2 16-15 —25-57
24 25-87 —16:12
2:6 3653 — 570
28 48-04 561
30 60-35 1775
3:2 73-42 30-66
34 87-18 44-30
36 101-62 58-61
3-8 116-68 73-57
4-0 132-34 89-14

APPENDIX 3. EXPLANATION OF THE RELATIONS (6-16)

Provided gm, hm and (h—g)m are >1, equations (6-8) to (6-11) for the reflexion and
transmission coefficients of region I show that, as ¢—0 (through positive values), waves
incident from below are almost perfectly reflected, while waves incident from above are
strongly absorbed.

The condition for the validity of the transformation formula for the hypergeometric
function of argument v to one of argument 1/v, used in § 6, is that

|arg (—v) | <.
(—v) is thus interpreted as v exp (—in), since

0<arguv = e<<3m.

Vor. 244. A. 65
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Ife <0, a different transformation formula is obtained ; —» must be interpreted as v exp (i7).
In fact, the hypergeometric function possesses branch-points at 1 and infinity (Copson 1933,
chap. 10), and the transformation formula is valid in the whole plane only when cut along
the real axis from 1 to +co. E, thus has a singularity at v = 1, that is, where X = 1 —iZ.
If Z = 0, this occurs for a real value of the height z, and for values of z greater than this,
the value of E, is ambiguous (by this method of solution). In practice, Z is always greater
than zero, so the singularity does not occur on the real z-axis and analytic continuation
along the real z-axis is possible. Hence the formulae can only be regarded as valid if ¢— 0
through positive values, the case ¢ = 0 exactly being impossible physically, and, by this
method of solution, ambiguous mathematically.

The following physical argument to explain the paradox was suggested by Dr K. G.
Budden. _

In (4:7) let (1+1/0)E, = F,
then d2F/dz?+k2F/(1+1) = 0,
so the effective dielectric constant may be taken as

W2 =sin?@+1/(1+1),

s oag  cos20—X/(1-iZ)
or ur—sin?0 = —X/(1—i2)

substituting the value of / from (4-3).

IfZ <1, then y2is almost real except when Xis close to the values cos?f or 1. As X increases
from zero to cos2f, the real part of u2—sin2@ decreases from cos2d to zero, and when
X = cos?l, y?—sin? 0 has the small imaginary value

u2—sin? 0 =1Z cot?4.
Thus waves incident from below may be regarded as reflected with little absorption from
the height where X = cos?6, provided the change of X per unit wave-length is small, i.e.
akl. ,
If cos?0 < X <1, the real part of 42—sin?§ is negative; and when X = 1, #2—sin?4 has
the large imaginary value isin2d

Z 2
while for X >1, the real part of 42 —sin?§ is approximately (X —cos?0)/(X—1), which is
positive and greater than unity. Hence, as a wave incident from above descends, the
effective dielectric constant increases, and the phase velocity decreases. At the height where
X = 1, the dielectric constant is large and negative imaginary, implying great absorption.
As Z diminishes, the thickness of the absorbing region becomes smaller, but the rate of
absorption becomes more intense. As the formulae (6-8) to (6-11) show, 7" | and | ¢ | tend
to finite limits as Z-> 0, and these limits are small if « is small.

p2—sin?f = —
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